
KLAT2’s Flat Neighborhood Network

H. G. Dietz and T. I. Mattox
Electrical Engineering Department, University of Kentucky, Lexington, KY 40506-0046

Abstract
KLAT2, Kentucky Linux Athlon Testbed 2, is a cluster of 64 (plus two ‘‘hot spare’’) 700MHz AMD Athlon

PCs. The raw compute speed of the processors justifies calling the system a supercomputer, but these fast nodes
must be mated with a high-performance network in order to achieve the balance needed to obtain speed-up on real
applications. Usually, cluster networks are built by combining the fastest available NICs and switching fabric,
making the network expensive. Instead, KLAT2 uses a novel ‘‘Flat Neighborhood’’ network topology that was
designed by a genetic algorithm (GA). A total of about $8,100 worth of 100Mb/s Fast Ethernet NICs, switches, and
Cat5 cable, allows KLAT2’s network to deliver both single-switch latency for any point-to-point communication and
up to 25.6Gb/s bisection bandwidth. This paper describes how this new network architecture was derived, how it is
used, and how it performs.

1. Whence KLAT2?
Since February 1994, when we built the first

parallel-processing Linux PC cluster, we hav e been
very aggressively pursuing any hardware and software
system technologies that can improve the performance
or give new capabilities to cluster supercomputers.
Thus, when AMD released the first PC processors with
vector floating point support (the K6-2’s single-
precision 3DNow! instruction set), we quickly
developed compiler technology to support the use of
these multimedia-oriented instructions for general
vector/SIMD parallel computing. The result has been a
strong relationship with AMD in which they hav e
supported our research work in a variety of ways. Most
recently, AMD donated sixty-six 700MHz Athlon
processors to our work.

We hav e used these processors to build KLAT2
(Kentucky Linux Athlon Testbed 2). The name is a
reference to the advanced alien who came to the earth
in The Day The Earth Stood Still to warn the people of
the earth that if they did not immediately stop fighting
among themselves, the planet would be destroyed; the
earth’s destruction is narrowly averted with the famous
command to Klaatu’s robot: ‘‘Gort, Klaatu Barada
Nikto!’’ KLAT2, Gort, and Klaatu are shown in the
photo.

Our goal for KLAT2 was to build a system that can
coordinate the Athlons well enough to reach the
performance range seen in the list of the ‘‘Top 500’’
supercomputers (http://www.top500.org/). In
fact, KLAT2’s single-precision LINPACK benchmark
performance would rank it 197th in the June 7, 2000
list.

1.1. Obvious Networks Are Barada
There never was any doubt that Athlon PCs

would be very capable supercomputer nodes. However,
it was not clear how we could create a cluster network
that would balance that performance; AMD only
donated Athlon modules — our meager budget would
have to cover the cost of turning the processors into
complete systems and networking them together. The
cost of the motherboards, memory, and cases were all
reasonable, but what about the network?

PAPERS (http://aggregate.org/) is a low-
latency network that we have dev eloped through 18
generations of custom hardware since 1994. It is cheap
enough for use in KLAT2. However, PAPERS only
solves part of the network problem. Although the 3us
latency PAPERS achieves is impressive, the aggregate
function communication that PAPERS provides is not
designed to send blocks of data from one PC to
another; a different network is needed for high-
bandwidth messaging.

We tried approaching several makers of Gb/s network
technologies for donations and/or discounts. However,

both the donations and discounts that we were offered
were insufficient to satisfy our requirements. The
cheapest of the Gb/s NICs that we found were PCI
Ethernet cards priced under $300 each, but even that
cost would have stretched our budget. Adding to that
the cost of a hierarchy of Gb/s switches brings any
solution based on Gb/s NICs over $2,000 per PC
connected. Further, the switch hierarchy multiplies
latency and a tree topology dramatically limits
bisection bandwidth. We needed a new solution.

1.2. The New Approach
When no solution seems to work, it is time to

rephrase the problem. We wanted to have the minimum
possible latency between any pair of PCs. Clearly, you
couldn’t put 65 NICs in each machine to implement a
direct connection... the next best thing would be to
have just one switch delay between any two PCs. The
problem then becomes that a 66-way switch that can
handle communication at full wire-speed is not cheap.

You can buy a wire-speed 32-way 100Mb/s switch for
about $525. Thus, we could use 32 dual-processor PCs
and channel bonding of multiple NICs
(http://www.beowulf.org/). Although dual-
processor PCs using Intel processors are competitively
priced, they divide the node memory bandwidth
between the two processors, delivering significantly
lower performance than two uniprocessor PCs would
for many codes. Even if we wanted to adopt that
solution, dual-Athlon PCs are not yet widely available.

The ‘‘Flat Neighborhood’’ network topology came
from the realization that it was sufficient to share at
least one switch with each PC — all PCs do not have to
share the same switch. A switch defines a local
network neighborhood, or subnet. If a PC has several
NICs, it can belong to several neighborhoods. For two
PCs to communicate directly, they simply use NICs that
are in a neighborhood that the two PCs have in
common. Coincidentally, this flat, interleaved,
arrangement of the switches results in unusually high
bisection bandwidth — approaching the same bisection
bandwidth that we would have gotten if we had wire-
speed switches that were wide enough to span the
entire cluster! We even get the benefit that, because
four NICs are available for simultaneous use in each
PC, we bypass some of the I/O serialization that using
IP would imply with a single Gb/s NIC (or channel-
bonded set of NICs) under Linux.

1.3. No Free Lunch
Unfortunately, flat neighborhood networks

introduce several interesting new problems. Using
KLAT2’s network as the primary example, the
remainder of this paper discusses:

• How to design a flat neighborhood network.
Unfortunately, only very small flat neighborhood
network wiring patterns can be designed by hand. We
created a genetic algorithm (GA) that can search for an
appropriate wiring pattern, also optimizing secondary
properties of the network for specific types of
communication traffic.

• How to physically wire the network. This may seem
like a trivial concern, but flat neighborhood designs do
not necessarily have good wiring locality properties
and, in the general case, are not regular (i.e., often have
no symmetry).

• How to perform basic routing between PCs. Most
network hardware and software assumes a variety of
network properties that flat neighborhood networks
violate. For example, if you ask PC #0 for the network
address of PC #1, you do not get the same answer that
you get if you ask PC #2 the same question.

• How to take full advantage of extra bandwidth that is
available for some (but not all) communication paths.
What is needed is very similar to channel bonding,
however, the standard Linux support for channel
bonding works in a way that is incompatible with the
flat neighborhood topology.

2. The GA Network Design Process
Conceptually, it is very simple to design a flat

neighborhood network wiring pattern. For example, for
6 PCs, each with 2 NICs, using 4-way switches:

����������
���������� ������������ ������������������������ 	�		�	
�

�
 ������������
�

�
������ ������������

��

��

��

��
Network 2 SwitchNetwork 0 Switch Network 1 Switch

A B C D E F

Thus, A and B are both connected to switches 0 and 1,
C and D to switches 0 and 2, and E and F to switches 1
and 2. For A to send to C, it uses switch 0. For A to
send to B, it can use either switch 0, switch 1, or both.

In practice, it is useful to reserve one port on each
switch for connection to an ‘‘uplink switch.’’ This
switch is not used in normal operation of the cluster,
but provides a very efficient means for communication
between the cluster and other systems as well good
support for broadcast/multicast. Thus, the above FNN
would really be built using 5-way switches and wired
as:

����������
���������� ������������ ������������������������ 	�		�	
�

�
 ������������
�

�
������ ������������

���

���

���

���

Network 2 SwitchNetwork 0 Switch Network 1 Switch

D E FA B C

Uplink Switch

Although the use of an uplink switch does not
complicate the design problem, the complexity of the
design problem does explode when a larger system is
being designed with additional, secondary, optimization
criteria (such as maximizing the number of switches
shared by PCs that communicate in various patterns).
Because this search space is very large and the
optimization criteria are very general (often requiring
simulation of each potential network design), use of a
genetic search algorithm is much more effective than
other means. The complete GA network design
process is described in [1]. Basically, the current
version of our GA search uses:

• A specification of how many PCs, the maximum
number of NICs per PC (all PCs do not have to hav e
the same number of NICs!), and a list of available
switches specified by their width (number of ports
available per switch). Additional dummy NICs and/or
switches are automatically created within the program
to allow uneven use of real NICs/switch ports (e.g.,
KLAT2’s current network uses only 8 of 31 ports on
one of its switches).

• A designer-supplied evaluation function that returns a
quality value derived by analysis of specific
communication patterns and other performance
measures. This function also marks problem spots in
the proposed network configuration so that they can be
preferentially changed in the GA process.

• A crossover operation based on exchange of closed
sets of connections between two parent network
configurations. The closure operation ensures that the

new configuration always satisfies the designer-
specified constraints on the number of NICs/PC and the
number of switch ports for each switch.

• Sev eral different mutation operators.

• A two-phase GA scheme in which large network
design problems with complex evaluation functions are
first converted into smaller problems with an evaluation
function that weights only the basic flat neighborhood
property: having at least one switch shared by each
pair of PCs. A number of generations after finding a
solution to the simplified network design problem, the
population of network designs is scaled back to the
original problem size, and the GA resumes with the
designer-specified evaluation function.

The GA program, written in C, uses SIMD-within-a-
register parallelism when executed on a single
processor system, but also can be executed in parallel
using a cluster. KLAT2’s current network design was
actually created using our first Athlon cluster, Odie —
four 600MHz PCs.

3. Wiring The Physical Network
One of the worst features of flat neighborhood

networks is that they are physically difficult to wire.
This is because, by design, they are irregular and have
very poor physical locality between switches and NICs.
The GA design process could be made to include a
model of physical wiring locality/complexity in its
search, but the resulting designs would probably
sacrifice some performance in return for the reduction
in wiring difficulty.

KLAT2’s PCs are housed in four standard 48"x18"x72"
shelving units. The network for KLAT2 consists of ten
rack-mounted 32-way (really 31-way plus one uplink
port) wire-speed 100Mb/s Fast Ethernet switches. Nine
of these switches form the flat neighborhood network’s
switching fabric; the tenth is used exclusively for (1)
I/O to other clusters, (2) multicast, and (3) connection
of the two ‘‘hot spare’’ Athlon PCs. Thus, KLAT2’s
network connects 264 NICs and ten switches in a
seemingly random pattern spanning five physical racks.
Worse still, because we were initially missing some
network hardware, we actually implemented one wiring
pattern and then rewired the system when the rest of the
network hardware arrived.

So, how did we physically wire KLAT2? The basic
trick involves recognition of the fact that it doesn’t
mater which switch port each NIC is connected to.
Each of the ten switches was assigned a color that was
used for all the cables connected to that switch. For
each of the PCs, we simply had our GA print out the

network design in the form of a label for each PC
showing the cable colors that should be plugged into
that PC’s NICs:

Wiring the cluster with the GA design took no more
than a few minutes per PC, including the time to neatly
route the wires between the PC and the switches. In
fact, we re-ran the GA to optimize for the
communication patterns of the DNSTool CFD
(Computational Fluid Dynamics) code [4] and
physically re-wired the entire system in less than a few
hours. The new design is:

The original physical wiring pattern looks like:

4. Basic Routing
The fundamental problems in flat neighborhood

network routing are conceptually simple, but break
many assumptions made by network software —
especially IP-based software. In terms of KLAT2’s
network in particular:

• Each PC has four different cluster-local addresses,
each on a different one of the nine cluster-internal
subnets. (A fifth address is aliased with one of the four
local addresses for each PC to simplify references made
from outside the cluster.) However, because all nine
subnets are connected by a tenth switch for multicast,
etc., any pair of PCs can communicate through the
switches using any NIC in one PC to reach any NIC in
the other. The result is that normal route discovery
procedures find that everything can reach everything,
and thus construct routing tables that do not reflect the
flat neighborhood topology. These incorrect routing
tables yield terrible performance due to unnecessary,
heavily congested, use of the uplinks to the tenth
switch.

• Many network libraries, such as LAM MPI [2][3]
(http://www.mpi.nd.edu/lam/), assume that
there is only a single IP/MAC address for each node —
and that a single server can distribute these addresses.
However, this yields essentially the same performance
problem discussed above; three of four NICs in each
PC would be entirely ignored.

Our basic routing solution is fairly straightforward.
Briefly, we hav e:

• Created a simple power-on technique for a server to
discover which NIC MAC addresses are in each PC.

• Augmented our GA network design software to
automatically create a full set of routing tables. Each
PC has its own, unique, routing table.

• Taken steps to ensure that no machine will ever
broadcast an address resolution request.

• Modified software, such as LAM MPI, so that the
customized local routing tables can be used.

A brief summary of the GA-generated basic routing
tables follows. Each row corresponds to a particular
PC’s routing table; each entry specifies which of the
nine neighborhood subnets would be used to
communicate with the corresponding other PC.

5. Advanced Routing
The basic routing concern is to ensure that

communications between a pair of machines go
through a single switch; however, many pairs of
machines have multiple choices for single-switch
connections. For example, KLAT2’s nodes k00 and
k01 actually have three switches in common, not just
one. Thus, a technique resembling channel bonding,
but much more complex, can be used to provide up to
three times the single-link bandwidth between k00 and
k01. In fact, using either PCs or the tenth switch, we
can get four times the single-link bandwidth between
k00 and k01, although latency on one of the paths will
be significantly higher than on the other three.

At this writing, we have determined a reasonable
implementation technique for advanced routing (see
[1]), but have not yet experimented with it. The
technique involves encoding all the viable paths and
using a modified lookup procedure to determine the set
of paths to use; it ignores any paths that would pass
through PCs (i.e., does not use PCs as routers). We
intend to add this new lookup procedure to an active
message library that we will be building for KLAT2’s

RealTek-based Fast Ethernet NICs.

6. FNNs vs. Other Network Designs
To better understand the differences between

FNNs and other network architectures, it is useful to
perform side-by-side comparisons. The first
comparison is based purely on the performance
predicted using a relatively simple model. The second
comparison uses a variety of standard benchmarks that
were executed using KLAT2 with two different routing
rules: one using the basic FNN routing, the other
treating the FNN with its uplink switch as a tree.

6.1. Predicted Performance
Since large FNNs in general, and the one used in

KLAT2 in particular, lack symmetry that would
facilitate closed-form analysis, it is most effective to
begin with analysis of a symmetric network for a
smaller system. Thus, let us first consider
interconnection network designs that can be built using
four-way switches for an eight-PC cluster.

Among the many different topologies proposed for
interconnection networks, fat trees have become very
popular because they easily provide the full bisection
bandwidth. Assuming that appropriate switches are
available, the eight-PC network would like like:

DA B C

SwitchSwitch Switch

E F

Switch

G H

Switch Switch

For this fat tree, the bandwidth available between any
pair of PCs is precisely that of one link; thus, we say
that the pairwise bandwidth is 1.0 link bandwidth units.
The bisection bandwidth of a network is determined by
dividing the machine in half in the worst way possible
and measuring the maximum bandwidth between the
halves. Because the network is symmetric, it can be cut
arbitrarily in half; the bisection bandwidth is maximal
when all the processors in each half are sending in a
permutation pattern to the processors in the other half.
Thus, assuming that all links are bidirectional, the
bisection bandwidth is 8*1.0 or 8.0.

Pairwise latency also is an important figure of merit.
Latency introduced by the software interface and NIC
is essentially independent of interconnection topology,
thus we can ignore this factor when comparing
alternatives. In addition, if the cluster nodes are
physically near each other, we can ignore the wire
latency and simply count the average number of
switches a message must pass through. Although some
paths have only a single switch latency, e.g. between A
and B, most paths pass through three switches. More
precisely, from a given node, only 1 of each of the 7
other nodes can be reached with a single-switch
latency. Thus, 1/7 of all pairs will have 1.0 switch
latency and 6/7 will have 3.0 switch latency; the
resulting average is (1.0 + 3.0*6)/7, or 2.7 switch
latency units.

Unfortunately, most inexpensive switches cannot
handle routing for a fat tree topology. The problem lies
in the fact that the switches within the fat tree must be
able to balance load using multiple paths between the
same two network addresses or subnets. Thus, if
switch cost is to be kept competitive, the fat tree
arrangement generally is not viable for technologies
like Fast Ethernet. In fact, the best conventional
topology that most commodity switches were designed
to support is a simple tree, such as:

DA B C

SwitchSwitch Switch

E F

Switch

G H

Switch

It is not difficult to see that latency of the tree is very
similar to that of the fat tree. For some communication
patterns, including all those in which only a single PC
pair are communicating, the tree does yield 1.0 link
bandwidth units for communication between a PC pair.
More often in parallel programs, only a fraction of link
bandwidth is available because multiple pairwise
communications are sharing the bandwidth of the 4
links to the top-level switch. The bisection bandwidth
is thus approximately half that of the fat tree. The
primary advantage is simply the ability to use dumber,
cheaper, switches; the primary disadvantage is poorer
performance.

Now consider using a FNN to connect these same eight
PCs with four-way switches. Like the tree
configuration, the FNN easily can use cheap, dumb,
switches that could not implement fat tree routing; in
fact, the FNN does not connect switches to switches, so
the routing requirements imposed on each switch are
minimal. However, more NICs are needed than for the
fat tree. At least for 100Mb/s Ethernet, the cost savings
in using dumber switches more than compensates for
the larger number of NICs. For our example, each PC
must have 3 NICs connected in a configuration similar
to that shown by the switch numbers and colors in:

DA B C E F G H

Switch 0 Switch 1 Switch 2 Switch 3 Switch 4 Switch 5

0 0 0 01 1 1 12 2 2 23 3 3 34 4 4 45 5 5 5

Unlike the fat tree, the FNN pairwise bandwidth is not
the same for all pairs. For example, there are 3.0 link
bandwidth units between A and B, but only 1.0
between A and C. Although the FNN shown has some
symmetry, FNN connection patterns in general do not
have any basic symmetry that could be used to simplify
the computation of pairwise bandwidth. However, no
PC has two NICs connected to the same switch, so the
number of ways in which a pair of connections through
an S-port switch can be selected is S*(S-1)/2.
Similarly, if there are P PCs, the number of pairs of
PCs is P*(P-1)/2. If we sum the number of connections
possible through all switches and divide that sum by the
number of PC pairs, we have a tight upper bound on the
av erage number of links between a PC pair. Because
both the numerator and denominator of this fraction are
divided by 2, the formula can be simplified by
multiplying all terms by 2. In other words, the pairwise
bandwidth for the above FNN is ((4*3)*6)/(8*7), or an
av erage of about 1.28571428 links.

Not only does the average pairwise bandwidth of the
FNN beat that of the fat tree, but the bisection
bandwidth also is greater. Bisection bandwidth of a
FNN is difficult to compute because the definition of
bisection bandwidth does not specify which pairwise
communications to use, but the choice of pairings can
dramatically alter the value achieved. Clearly, the best-
case bisection bandwidth is the number of links times
the number of processors; 8*3.0 or 24.0 in our case. A
conservative bound can be computed as the number of
processors times the average pairwise bandwidth;
8*1.28571428 or 10.28571428. Either of these
numbers is significantly better than the fat tree’s 8.0.

Even more impressive is the FNN design’s pairwise
latency: 1.0 as compared with 2.7 for the fat tree. No
switch is connected to another, so only a single switch
latency is imposed on any communication.

However, the biggest surprise is in the scaling.
Suppose that we replace the six 4-way switches and
eight PCs with six 32-way switches and 64 PCs?
Simply scaling the FNN wiring pattern yields pairwise
bandwidth of ((32*31)*6)/(64*63) or 1.47619047,
significantly better than the 8 PC value of 1.28571428.
FNN bisection bandwidth increases relative to fat tree
performance by the same effect. Although av erage fat
tree latency decreases from 2.7 to 2.5 with this scaling,
it still cannot match the FNN’s unchanging 1.0.

It also is possible to incrementally scale the FNN
design in another dimension -- by adding more NICs to
each PC. Until the PCs run out of free slots for NICs,
bandwidth can be increased with linear cost by simply
adding more NICs and switches with an appropriate
FNN wiring pattern. This is a far more flexible and
cheaper process than adding bandwidth to a fat tree.

6.2. Measured Performance
In addition to the theoretical predictions about

performance, we carried-out a series of detailed
benchmarks on KLAT2’s network. Surprisingly, most
network benchmarks focus on the performance of
communications between a single pair of PCs given
that all other processors are not causing network traffic;
for a cluster, this is rarely the case. We found the Pallas
MPI Benchmarks (PMB) [5] to be among the few
benchmarks examining network performance under
loading conditions more typical of cluster use. Thus,
all the benchmarks we report here come from running
PMB on KLAT2.

Aside from the FNN, the only other viable topology
supported by KLAT2’s inexpensive Fast Ethernet
switches is a tree. Fortunately, because KLAT2’s FNN
includes an uplink switch, we were literally able to
benchmark both FNN and tree configurations without
physical wiring changes. The FNN benchmarks
employed the LAM MPI that we modified to use basic
FNN routing. The tree benchmarks forced routing that
made the FNN uplink switch behave as the root of a
tree; this was easily accomplished by forcing each PC
to perform all communications using its NIC 0. Any
FNN with an uplink switch can embed a tree network
in this manner.

6.2.1. Barrier Synchronization
The first PMB test measured barrier

synchronization between processors. A barrier
synchronization is an N-way synchronization operation
in which no PC is allowed to execute beyond the barrier
until all PCs in its group have signaled their arrival at
the barrier. KLAT2 has 64 PCs; thus, groups of 2, 4, 8,
... up to 64 PCs could synchronize. For group sizes
less than 64, there might be only one (One) group
active in the machine at any giv en moment or there
may be multiple (Multi) groups so that all PCs are
active simultaneously.

Using KLAT2’s network as a tree, one would expect
Multi to be slower than One due to interference in the
network. The Multi case is slower:

Aside from being generally faster than the tree, the
FNN should not suffer a significant penalty for the
Multi case. As the following figure shows, there is
indeed no penalty for the Multi case; in fact, the Multi
case is even slightly faster for groups of size 16 or 32
PCs:

6.2.2. Ping-Pong
The second PMB measurement is a ping-pong

test: a message is sent from one machine to another,
which sends a message back in response. The time
between sending the initial message and receiving the
response is twice the end-to-end latency (i.e., twice the
one-way time). PMB measures this latency both for
only one pair of PCs active (One) and for all PCs active
(Multi) in pairs.

Again, we would expect the tree to have poorer
performance in the Multi case due to interference, and
that is precisely what happens:

In contrast, the FNN both has lower latency (due to all
paths passing through only a single switch) and the One
and Multi cases achieve virtually identical
performance:

6.2.3. Exchange
The final set of PMB measurements we present

involves processors exchanging data simultaneously in
both directions along a one-dimensional ring whose
length is given as the group size. The One case has
only a single group active; Multi has all groups active
simultaneously. This type of communication pattern is
typical of many grid-structured parallel computations.

For the One case, the tree network actually achieves
about 21.5 MB/s — very close to the theoretical
peak — in sending 4MB messages between two PCs.
However, although some groups may ‘‘get lucky’’ and
be connected to the same switch (as the size 2 group
happened to be), pairs that span switches severely limit
performance of the entire group. Thus, peak
performance is excellent, but average performance is
relatively poor:

Continuing with the One case, the FNN also achieves
very high performance. In fact, because two different
NICs can overlap their operation in some cases,
bandwidths as high as 31.2 MB/s are achieved. Notice
that still higher numbers would be achieved if we were
using FNN advanced routing and/or if we had told the
GA to optimize for that particular set of communication
patterns. Even more significant is the relatively wide
and high plateau in the FNN performance; the average
case is much better than for the tree. The folds in the
graph are real, repeatable, and as yet unexplained,
probably the result of an anomaly involving buffer
handling:

When we consider the Multi case, we clearly see why a
tree network can have such a crippling impact on the
performance of many codes. The best per-PC
bandwidth achieved is only about 1.36MB/s!

This tree performance is especially daunting when one
realizes its implications on ‘‘channel bonding.’’ Even if
we were to duplicate the entire switch tree for 5-way
channel bonding, and have the channel bonding be
100% efficient, all of that hardware would yield about 5
times 1.36MB/s, or 6.8MB/s! Worse yet, that is a peak
number achieved only for a specific group size and
message length... the average performance is even
poorer.

In contrast, the Multi case for the FNN yields
performance that is only a little lower than it achieves
for the One case. The disturbing folds in the graph are
ev en more pronounced, but average performance is well
above the peak that could be achieved using channel
bonding with trees:

We do not claim to fully understand all the properties
of FNNs and we have not yet implemented software
that can take full advantage of them. Even at this early
point in their development, FNNs clearly offer
significant performance — and price — advantages
over other network architectures. If all you need is
single point-to-point bandwidth, you might not want a
FNN; but where bisection bandwidth and/or low
latency is the primary concern, as it often is in cluster
parallel processing, FNNs are very hard to beat.

7. Scalability
The best way to explore the scalability of FNNs

is to directly use the genetic search algorithm for
specific system designs; unfortunately, the cost of
running the full GA design tool is too high to try a very
large number of system sizes. However, for use as an
interactive WWW-interfaced CGI program, we
constructed a very fast simplified version of the FNN
design program that uses simple scaling rules to
quickly create reasonably good FNN designs for a
given number of PCs, ports per switch, and NICs per
PC. Modifying this program made it feasible for us to
explore a wide range of system parameters; literally, all
system sizes from 3 to 1024 processors.

The following four graphs show how the number of
ports per switch must increase to accommodate more
PCs in the cluster. Each graph corresponds to a
different maximum number of NICs allowed per PC: 2,
3, 4, or 5 NICs/PC. The ‘‘ragged’’ appearance of the
curves is due to the fact that, unlike the full GA design
tool, this simplified design tool often fails to find the
minimum FNN configuration.

Although the depressing reality is that very wide
switches are needed to construct a FNN for a very large
machine with only a few NICs per PC, this is not as
large a problem as it first seems. The ideal is to use
switches within a FNN that are capable of full wire
speed, but similar benefits can be obtained in very large
systems by using moderately-sized switch fabrics (e.g.,
tree or fat tree of switches) for each switch within the
FNN. For example, wire-speed 309-way switches for a
FNN connecting 1024 PCs may not be available, but an
FNN using 309-way switch fabrics will still yield a
strong performance edge over a 1024-way fabric.

8. Conclusions
In this paper, we present a new network

architecture: the flat neighborhood network. This
single-stage topology makes better use of commodity
NICs and switches than traditional topologies, yielding
very good latency and outstanding bisection bandwidth
with very low cost. It ev en allows for the network to be
engineered, using GA techniques, to optimize
performance for specific communication patterns and
machine properties. Unfortunately, it also requires a bit
of clever restructuring of the usual software interface to
the network.

Preliminary results with KLAT2, the first flat
neighborhood network machine, show that the expected
performance benefits are truly realized. At this writing,
we have two primary application codes running on
KLAT2. Both of these codes are using our version of
LAM MPI modified to use basic FNN routing. The
advanced routing is not yet used.

DNSTool is a full CFD (Computational Fluid
Dynamics) code, such as normally would be run on a
shared-memory machine. Even with KLAT2’s FNN,
this code spends about 20% of its time in
communication. However, it is running on KLAT2 well
enough that it is a finalist for a Gordon Bell
Price/Performance award [4]. The official
price/performance is $2.75/MFLOPS double-precision
and $1.86/MFLOPS single-precision.

The other application code KLAT2 has been running is
the standard LINPACK benchmark. Using
ScaLAPACK with our 32-bit floating-point 3DNow!
SWAR extensions, KLAT2 achieves over 65 GFLOPS.
The resulting price/performance is better than
$0.64/MFLOPS, making KLAT2 the first general-
purpose supercomputer to achieve significantly better
than $1/MFLOPS.

Clearly, neither application could have achieved
comparable price/performance without KLAT2’s FNN.
We believe that FNN architecture can bring similar
benefits to a wide range of applications. We anticipate
making all the GA network design and routing software
fully public domain and have already begun distributing
them at: http://aggregate.org/

9. References
[1] H. G. Dietz and T. I. Mattox, ‘‘Compiler Techniques
for Flat Neighborhood Networks,’’ Proceedings of the
13th International workshop on Languages and
Compilers for Parallel Computing, IBM Watson
Research Center, Yorktown, New York, August 10-12,
2000, pp. 239-254.

[2] The LAM MPI Implementation,
http://www.mpi.nd.edu/lam/

[3] Message Passing Interface Forum, MPI: A
Message-Passing Interface Standard, Rice University,
Technical Report CRPC-TR94439, April 1994.

[4] Th. Hauser, T.I. Mattox, R.P. LeBeau, H.G. Dietz,
P.G. Huang, ‘‘High-Cost CFD on a Low-Cost Cluster,’’
Gordon Bell Price/Performance finalist to appear in the
IEEE/ACM Proceedings of SC2000, Dallas, Texas,
November 4-10, 2000.

[5] Pallas MPI Benchmarks (PMB), version 2.2,
http://www.pallas.com/

